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"‘lerror rate. These critical values ere considerably different than those given by

fpositive hehavior, ard estimation of o are examined. The Monte Carlo studies indicate

Jof all versions decreases drastically when r incresses from one to two to four. Wnen

‘fheve a smaller detection rate than the half-normal plot with an equivalent experiment-

u

Dept of -the Navy, washxngton, D.C.
Monte Carlo studies of the orig*nal version of the half-normal plot (Daniel,
Technometrics 1 (1959) 311-341) and two new versions are reported. Data representative
of the 15 contrasts from a éE:Q, v-q = b, factorisl expcriment are generated. Design

present in the Qh experlment and m, the size of the re-l contrasts present. Studies
are made for designs with a = .05, .2C. b0, r = o, 1, 2, 4, and 6, m = 0{20)85, where

We give critical values for the various version ¢ which control the experimentwise

Daniel.
Detection rate, i.e., the proportion of real’ ceatrasis declared significant, false

that one of the new versions is superior to the originul version. The detection rate

several_small real contrasts are present, the sensitivity can ve increased and the
magn1tude of the average errors in estimating o can be greatly reduced by u51ng
a3 .2 or ;U, rather than a = .05. N

meination procedures for analyzing a single replicate 2" factorial experiments

gise errpr rate, unless the experimenter can accurately nominate ten errcr contrasts

in the 2" experiment.
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AN EMPIRICAL STUDY OF THE HALF-NORMAL PLOT

N A

by

Dougias A. Zahn
Florida State University

1. INTRODUCTION

vy
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The half-normal plot as introduced by Daniel (1959) is a multi-

purpose tool for criticizing and interpreting the contrasts yielded by

st

s single replication factorial experiment. It gives us a means for
approaching the following generai problem:
- Let the statistics Y., Y,, «o., ¥ e independent,
normelly distributed random variables with means u,s u,,
eees 4 and common variance o?. Assume thst at most = ‘af the
uy are-uon-zero, vhere r is small relative to n, and that wve

bave no prior estimate of . Given y;, ¥y eces ¥, (single

observations of each of the n random variables), (1) decide

vhich, if any, of the y; are non-zero and (2) estimate o.

This problen arises in many contexts. The motivating one was
: single replication factorial experiments vhere we can think of y; as
a contrast estimating the effect u i of a factor or interaction between
factors in th;e experiment. The half-normal plo: can be used to decide
vhich of the g ore significautly non-zero. After the significant con-

trasts he' been isolated,ve can then use the ha'f-normal plot to esti-

mate g . .¢n the insignificant contresw:.

Birpbaum (1959) invostigated the probability that the half-normal




N e A e S D M s S s M

2

plot will detect e single real contrast; i.e., a contrast with mean
u #0, vhen n = 31, He found that it compared well to the multiple .,

t-test in this situation. However, he warned that his findings rested

;;é

feIL A

heavily on the sssumption that only one real contrast was present., He

l

e il

~also warned that if more than one real contrast was present, the vower

of the bfot may be greatly reduced., This report presents results cf

1

oy
Y

%ﬂm%&fu

a Monte Carlo study of Daniel's original version of the half-normal

aiih

plot and two modifications of it vhen as many as six real contrasts of
size 1o to 8 are present in-a '3, pug-= L, factorial -experiment..
Thus, we ;cqnéi‘iler the power, false vositive beﬁ‘aﬁor: and varisnce
estimation of ihese vérsions—df;tii'e hii?;fjbinal plot t;hen they are
applied 'to the general problem in the cav. n = 15, since there are 15

contrasts of interest, ignoring the grand mean, ina 2% factorial

DOV DA

experiment. lHowever these versiorﬁ,_ ﬁor»«obﬁ;us modifications of them,
can be used for any n. The cases n =8, 9, ..., 15 can be analyzed
using ~ritical values in Table 3.1. Critical values for other cases

can be constructed using procedures described in Section 3. Additional

\\\\\m‘mm\mMﬁm&@r&fxé‘»ﬁ”‘»’ i

\
i

L7

results are presented in Zahn (1969) and are available from the author . S

on request,

'

A B bl sl
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2. VERSIONS OF THE HALF-NGRMAL PLOT

To investigat2 the effects of moditying various steps of the
‘half-noraal plot on sensitivity and variance éstimates, we have in‘-i
R -cluded a comparison of several versions of the half-normal plot in

our Monte Carlc investigation.
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bt St sl s e il




) A AT BT s sty

AR

2,2 Vension X

Culc\nate the order statistics, X) 2%, S 00 < xlS’ o? the

absolute values of the 15 observed contrasts. Divide the order

1
iy
-

Nt ik Y
A o TP

statistics by ., the initial estimate of ¢. In this version

8; * X,;+ This produces a set of standardized order statistics,

et s 000 2 tlS’ vhich are also used as test statistics to
exam’ne the order statistics for significance,
'.Bx:ls set of scale-free order statistics may be plotted on/a

revised atandardizeé, half-norml grid, mustrated'ii’?ig\n'e 2.1.

Bomimpees
" i I
Rl S LY SEOr TS

The .05, .20, and L0 lewvel. crit:lcs.l ’v‘a:l.ues for this version are

Ly
I

indicated by the points ‘on the grid which are connected by lines to
fora the .01;:, »20, and .0 level guardrails, respectively. This grid
differs from the standardized half-forsal grid given in Daniel {1959)
in three vays: 7
(1) The stanﬂardized order statistics are plotted as the —
7 ordinate, ratherithan as tLe abscissa, as ii ﬁi;l
(1959), to make the half-normal plot correspond more
- clo_s_e_lg to the usual regression graph on which the
7 fra;:don variable is plotted as the ordinate,
(2) To take advantage of benefits cited by Ferguron (1960),
the standardized order statistics are plotted sgainst
the mean of the order statistics of a rardom sample

= ) of size 15 from the standard half-normal distribution.

These neans have been computed by Blu;kgnghip (1965)

: o v N ) I L YN Y )
b Mu\‘hmmmm‘mﬁruwmuwm e e it s SR e 0ttt 0 A B3 oo M B D st ek 1 B bt

and are given in Table 2.1 for samples of sizes 1(1)15,
(3) The guardrails given on the revised grid differ con-

siderably from those on the grids in Daniel (1959).
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FIGURE 2.1

_ Revised Standardized Half-Noamal Guid for
. Vension % for 15 Contrdsts
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TA3LE 2.1

(BT ALY

Means of he Onder Statistics of Random Samplcy of Sizes
1..25 <.+, 7 From zhe Standard Half-Hormzg Distribution

LR

—

e The table entry in row i and coluwm J is m(i,}) = the
mean of the ith order statistic in a random sample of
size § from the standard half--normel distridution,

< —_—
\\\\3 1 2 3 b 5 6 T
1 jo0.798 o0.467 .0.335 0.262 0.226 ~.183 0.160 .
2 1.128  0.732 0.553 0.LU8 0,377 0.326
4 1.%5 1.0k 0.835 0,702
5 1.570 1.149 0,934
3 < 1.65% 1.235
7 ” 1072"

pTe.

,ummm:mwmummmmmwm’:&m«mwmmmssmmmm%nmzmmwmvmmmwmwﬁmwmmwﬁﬁmmm.ma\h&mﬁm\&Mwmmmmmﬁmmm&aym‘mmm\ww:mmwwam».vw&awm«mm‘
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1.02 0.88 0,77 0.69 0.63 0,58 0.53 0,50

e = ey

g -
|
S ; 6
TABLE 2.1, continued '
ZT: i ) ‘
= - Neans of the Ondgg;s¢nziatica 0f Pandom Samples of Sizes
8, 95 «ovy 15 From the Standand Hal{-Nowmal Nistrnihbution
The table entry in row i and colurm J is m(i,j) = the mean i
5 of the 1* order statistic in a random sample of size § i
. from the standard half-normal distribution. i:
3 ] 8 9 ¥ 1 122 13 W 15 I
- \
- | “
- 7 -
| 1 0.1% 0.13 0,12 0,11 0.10 0,09 0.08 '0.08
= g 2 0.20 0.26 0.23 -0.21 0,20 0,18 0.17 0.1f ]
} 3 | ok 0.3 0.35 0.32 0.30 0.27 0.26 0.2% ’
- - 2
f 4 0.61 0.5k 0.48 o.8% o0.l0 0.37 0.34 0.32 3
77
: . Z
% 5 c.80 0.70 0.62 0.56 0.51 0.k7 0.44 0.4 5
i E]
i =
! 2
{
}

.31 1.09 0,98 o0.8: 0,76 0.60 0.64 0,50

.78 1.37 1.15 1,00 o0.9n 0,81 074 0,60

1.8 i.k2 1.22 1,06 0.95 0.86 0,70
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The computation of our guardrans and the error rate

they are intended to gatzjol are considered in Section 3,

Table 3.1 gives the cxitical values on which the guardrails for
this versi-n and the subsequent two versions are based.

The detection process is a sequential statistical procedurz in
that whether contrests ars tested for significance late in the pro~
cess deperds on results observed early in thg process, We first
test X for significance by comparing test statistic 15 = tlS =
*iﬁl-in to the appropriate critical value ¢ g0 If t;5>¢;o- 35
is declared significant and we then examinc o) We continue testing
contrasts until one is declzred insignificant or until a meximum of
four contrasts are declared significant.

If desired, the detection process can be carried out without
guph:;ng the order statistics. ¢ need merely conpute the approrriste ‘
test statistics and compare them to the critical ﬂm. Of course,
the beauty of the plot is that it also enables us to examine the con-

trasts for the sbnormelities discussed by Daniel (1959).

The detection process divides the contrests intc tvo sets:
significant contrasts ani insignificant contrasts. The latter set
will be referred to as error contrasts becausc we calculate s g» OUT
final estimate of o, from: them, Let e denote the-number of error
contrasts. Ve plot on ordinary linear-by-lincar graph peper
X)s Xps ooy X, amainst x(i,e), i =1, 2, ..., e, vhere n(i,e)

th

denotes the mean of the 1™ order statistic in a random sample of size

e from the standerd haif-normel aistribution. We f£i% the least squares

regression line through the origin of x onm, The slope of this iine

:

R,

{

ottt
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is See the final estimate of o, which should not be confused vith s <

the initial estimate of o, )

The cases n = 1li, 13, and 12 can also be examined using this

3 version vith x . as the <est mtatistic denoatnstor and the critical A
 values in Table 3,1, provided that the rasearcher is willing to assune ‘
; that no more than tires, two, or one wresl contrssts are presert, ~
respectively, For instance, if n = 13, the first test statistic is
‘ t3* x13/xu aLd its .05 level critical value is 2.36; the second \
= 3
is t,, = X,,/x,, and its .05 level critical value is 1.9L, :

P—

2.2 Vesions _ -

Versions § ané X only aiffer with respect to the tes:-statistic

dencninstore used duwring tin detection proceas, We define

At S e
' [

31&_(1:.3)3?*} x,m(i,3) // f {ﬂ(isJ)]ag k<3 :4
: S 1 ! oim ‘ 3
‘ The statistiz SL(11,15) is used as test statistic denominator by

'él:"i:m‘ 5, ‘This is the a/lgp;/ct’@t squares regression line I :

through ﬁheﬁcriginio’tix onm fitted to the points [n(i.ls).xi] ,7 ‘ ‘

i =21, 24 sess 11, For this version, the standardized order-statistics

are ¢, = 115135(11.15). etc, Thus .~ the test statistic denominators

of ‘version § should be less varisble estimatorsof o than the test

statistic denominators of X, since the denocminators of S are based -

~on more information, Hence, the gusrdrails on the revised staniardized
i} hdt-nornl ‘grid for versio S/ﬂi\;ﬁ;ated in Figure 2.2 differ from

n
Pt

" those on the grid for version X. Again, four 1 the maximum nusber

6t contmti vhich may be d:clared signi\ficant, The finsl estimate

5,3 m i "’ﬁ"’l Wﬂﬂﬂlw

i

a7
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Version 8 {or 15 Contrasis

Revised Standardized Half-Normul Grid fon
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of-c is obtained exactly as it is by version X. Using the above

notation wve see that, if there are e error contrasts, s e~ SL(e,e).

2.3 Vension R

Only one of three other half-normel plot versions ine
vestigated in owr Monte Carlo study vilil be considered hre. The
first step in version R is to compute the standardized order
statistics t; = :-:i/SL('.’,ls), i=1,2, ...y 15. Here the test
statistic denominator is the lexsi squures line through the ordgin
fitted -0 the smallest half of the mht;ﬁsts being tested for
significarice. If xlsi/s ’c’leclarec‘-. significant, the remainder of
the detection nrocess in this version differs -considerably from the
detection prccess in versions X and S,

We reassess our position every time a contrast is declared
significant. This step reflects the fact that a contrast appearing-
significantly large alters our assessment of the state of nature.

Ir %5 is declared significant, we then exsnine the remsining 1b
absolute contrasts under the hypcthesis that they constitute a
random sample of size 1k from the half-normel distribution. These

1k crder statistics are restandardized by 2ividing by SL(7,1l) vhich
is an unbiased estimate of g under this hypothesis. We now cowpare
the restandardized value of x4 to the appropriate critical value.

If it is declai:d significant, ve concentr~te on the : 2:iining 13
abgoluta coutrasts, considering them 8s a random ssmple of size 13
from the half-normal distribution. Ve restandardize them by diviling

by SL(6,13). If Xy is not declared significant,s, is computed as

before from the 1l error contrasts.

o
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Another difference between this version and the previcus twn

is that R may declare as many as seven coatrasts significant. To

AR

gain this additional flexibility, ve have based on thz test statistic

denominators on at most the seven smallest absolute contrasts, i

3. CRITICAL VALUES FOR THE HALF-NOR!‘AL, PLOT VERSIONS

Before any version can be used, we need critical values for s
Judging the test statistics. Clearly, eapp version requires several
critical values since each may declare more than one contrast
significant. The a level critical value for a given test statistic i
t is defined to be the (1-a) quantile of its distribution under the

hypothesis H: all contrasts currently being tested for significance

have means p = 0, For example, for t13 = x_,‘_:,'/x.l:L for version X,

the .05 level critical value is the .95 quantile of its distribution
under Che hypothesis H: the 13 contrasts being tested for significance
~ all have means u = 0, Table 3.1 gives .05, .26, and .LO level

‘criticsl valuss for all versions. We determined these critical 3

Aawa b

values by generating an empirical ‘distribution bssed on 999 simulations

SRk H

for each test statistic and estimating the .95, .80, and .60 gquantiies

b b

by the corresponding quantiles of the empirical distribution.

The precision of our estimated quaniiles cen be evaluated using

nathods described by Wiiks (1962, p. 331). We are G0% confident

ol o a8

that the critical values given in Table 3.1 are correct to within

*+ .10, except for the .05 level critical values for version R, We

¥
LY LN TR T e

are 90% confident that thesc values are correct to within + .25,

B .5
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TABLE 3.1 .

«05; .20, and 40 Level Criltical Values of the Test Sfatistics lsed By
ALL Versions.

These a level critical values are the corresyonding (l-a) quantiles of
the simulated empirical distributions.

Test Statiatic T

Version Level = a i Cap—

15 %tz Y tm tp oY

AT b3 b5 h.69
.92 2.9" 2.8& 2.90
2 2,22 2,15 2,13

0% k13 L.31 W3
R .20, 2,94 2,8 2.96
ko0 2.32 2,26 2.27

[

: .05 3,14 2,83 2,36 1.9%
X +20 2.8 2,21 1,91 1.5%
'!;O 2.08 1087 1.60 1.31

2,61 2.21
2.06 1.76
1.76  1.51

05 3.37 3.0
.20 2.61 2.3
&0 2.20 1.9

[¢/]

PN U

:
SR e WK L LA e R b

T 11 NP I LI e SR

arnadds,

I I
o 0wl i o,

ot N ract e A3 i



SR T Lo et s FLS s e TR s By ot Tt o T e e i e i sy T L T T ST ST S Tmme e e e e s —a mroa Az w oL = f e w e —e _
SRR R T S PR R TN S SRS S IR e TR R R R B e L T e R

po S o S g, s preeER R B S

- Jhu:.—mh“ , 3§

e bR A Ao s At o o At A AR e N oo e i g

13

What aspect of the falsec positive behavior of e version is

controlled by the critical. values used obviously depends on the choice

i

LT -y

of critical values. The aspect we chose to control is the error

rat. per experiment (EER). The EER is defined to be the prcbability

A an cwmna e s

i o? declaring at least onre false positive in the anelysis of one

experiment. It is eesy to see that these critical values control the

s A e e

EFR if no real contrasts are pruvsent. In this situation we declare
at least one false positive if and only if we declare the largest

contrast significant. This nccurs if tn’ tue test statistic for

exanining X is larger than Cys its o level critical value. But,

AT ! i
1 el s s 4 S B A TR ¢ Y SRl

<, is the (1-a) cuantile of t, under the hypothesis that all n con-

b e o sk

i e P e e N hmmwﬁw&:ﬂiﬁiw»\il}hﬁék#gﬁﬂmﬁﬂmm

trasts beipg examined have means u = 0, MHence, EER = P(t;n > cn) = q,

o bt 4 PR Sttt

Using the (1-a) quantiles as a level critical values in general

; :
situations,we have proved the following theorem for n = 2 and n = 3,

1

: Theorem: The experimentwise error rate (EER) of 1
H

t the half-normal plot using o level critical values is

§ £ a, regardless hov many real contrasts of various r}%
1 23
%‘ gizes are present in the experiment teing analyzed.

i

5

Q The proofs for these cases and much empirical support for the case

n = 15 are present in Zahn (1969).

TR AR YA AL 95 Mo

3.1. Differences Zeteen the tmpinically Detemsined Critical Values
and Daniel's Critical Values

ko O] LR B

Since version X and the original version of the half-normal plot

¥,
i)
\
\
. ;. ,
e X e W, bk

use jdenticsl test statistics, criticsl walues corresponding to those

estingted by tuoe simulation results for version X can be read from the

PRt gty
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guardrails of Figure lla of Deniel (1959). When no real contrasts are
present, Daniel's guardrails and the simulated guardrails will yield
approximately the same EER. However, if one large contrast is present,
Deniel's .05 zuardruil mey yield an EER as large as .20. Daniel refers
to nis .05 guardrail as having a';rejection rate” of .05. The large
difference between the "rejection rate” of Daniel!. guardrails and the
‘EFR sctually yielded by those gqardrailé persists when more than one
real contrast is present. An experimenter using Daniel's original
version of the half-normal plot should definitely be aware of this

deficiency in the critical values presented in Teble lla of Daniel

(1959).

4, THE MAIN ST!ULATION STUDY

Using the critical values from Section 3, we have performed
computer sampling experiments to investigate the detection rate,
error rates, snd variance estimation of the half-normal plet and to

compare the three versions described in Section. 2.

4,1 Situations Examined
This section defines the notation used tc describe a given
"situation” and lists all situatons which were examined. A situation
is a specification of the mumber and sizes of the real contrasés pre=~
~sent in the experiment. We assume that the state of nature and the
- experimentsl design are such that all Model I Anove assumptivns are
satisfied.
In the simnlest situation, the null situation, all uy = 0. The

aull situation, deroted {0), represents th: state of nature when the
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null hypothesis chat all contrasts ars null is true., For a given situ~
ation representing a particular alternative hypothesis, one or more

of the u, # 0. Daniel (1959) .end Birnbaum (1959) investigated
sitﬁations’in vwhich one u N ranged from 1o to 60. We consider situ-
ations in which from one to six of the u; are non-zero. A sit:uatiop
with as many as six real contrasts might occur, fer instcnce, when an
2xperimenter encounters a 26°2 fracvional factorial experimert in
vhich four main effects, along with two of the two-factor interactions,
are non-zero.

With more than one real contrast present, the situations easiest
to characterize are those in which contrasts of only one size are y. :sent.
We refer to these as Type I situations and congsideyr them in Section
S. We define (r,m) to be a situation in which there are r real con-
trasts, each of size m. Thus (4,60) implies four non-zero contrasts,
each of size 6a.

In Section 6 we consider Type II situations, i.e., situations
with real contrasts of two different sizes present. ~we define
(rl.nlgrenz) to be a situation in vhich there are r, real contrasts,
each with mean B> and Ty real contrasts, each with meen L For
instance, (2,60;2,80) implies four non-zero contrasts, two of size
6o and two of size 80. The remaining eleven contrasts are null,

i.e., each has mean zero.

We define an r-situation to be a Type I situation with r non-
zero contrasts. Thus, (4,60) is a particular Y-situation. -Similarly,
ve define an r,-r,-situation to be a Type II situation in which there

are r, contrasts of size n £ 0.0 and r, contrasts of size n, # 0.0,
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The 'lain Study examined Type I situations (r,m), where _ _

r=1,2, 4, 6 andm= 0(20)8. We also examined Type II situations
(rl.nl;re,nz), vhere r, =r, =1, 2; m = 20, lo, 6o; and m, = m, =
bo, 60, 80. Ve similated each situation 1000 times and analyzed
the simulated data using each version with each of three critical

value levels: a = 0.05, 9.20, and 0.40, 75 ‘discuss the performance

e

\

of version § in analyzing ::xj..f:'rfm:nts with 2 real contrasts of size -
60 present, we will, for brevity, refer to results for S in (2,60).

The pseudo-random stsndard normel deviates used in our simulation

ny

e . oyt . ! ' . wot N ! ! e
Rl e rt i P 22 et i ool Wit S S s i b ol g3 bt my e R

o » ' . L
ket o B bbb A 0 e s AR Ml s i a1 ) o it A

studies were .generated by the Harvard. Computing Center's RANDOH
function subroutine which is available on the IBSYS, Fortran IV

system using an IBil 7090/% computer.

4,2 The Experimental Desian

The Main Study may be viewed as a factorial experiment in which
there are ﬁ;ree factors, vervion, a, and situation, at 3, 3, and 29
levels, respectively. For each situation w: decided to examine the

three versions at each o using the 3ame 100y sets of 15 rsnd., Hence,

in each situation we introduced a positive correlation between the
results for each version and increased the precision of comparisons among ﬁ
the various versiors in the same situation. This design is analogous
to a split-plot or nested design in which the factor "situation" j

- 2
is applied to the whole plots (eazh independent set of 15 rsnd «;

generated in one simulation of 2& experiment constitutes a whole

o Lok

v
ik

|

plot) and each version at each a is applied to onme sub-plot. The

g

TN

sub-plots are sets of simulated contrasts, each set being identical

by
k=
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to the set of 15 incremented rsnd produced when the 15 rsnd which
constivuted the vhole plot are modi i‘ig_d acgbrding to the situation

being simulated. IR

L.3 Criteria for Evaluating a Vension's Penformance

The detection rate D(S) is the average proportion of real con-
trasts present in situation S which are detected. We use the statistic
a(S) to estimate D(S), where

-r
a(s) = I § p(3)/r, aud
J=0
p(3) = (number of simulations in which exactly j of the r veal contrasts

- vere detected)/1000. :

We need to cc;nsider extensions of this criterion to measure a
version®s detection ability in Type II situations., Obviously, two
detect@on rates, dl and d,, are useful in Type IT situations, vhere

d;(rl,nl;re,mz) = (number of size m, contrasts detected in 7

i
the 1000 simulations of (:l,ml;rz,ma))/IOOOr .

i
i=3, 2

Another vital aspect of a version's performance is its false
positive behavior. One criterion here is the experimentwise error
rate {EER). Recall that this is the probesbility of at least one false
positive per experiment in situation S. It is identical to the
probability error rate of ifiller (1966). We use the statistic
1£1(S) to estimate the EER, vhere

1S5-r
f1(s) = ¥ qf3), and
J=1
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aoumber of simulavjons in vhich exactly § of the
a(3) = 15-r null contrasts are declared simificant

2000

The sum runs to 15-r becsuse, if r reul contrasts are present, it is
-impossibl 2 to declare more than 15-r false nositives. Restricuvions
3 b‘ : built into the procedur: for a pgrt.icular he.if-r.o:'mal plot varsicn
often set the maximum number of fai;se positives at an even smaller

number.
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-- Another criterion relating t¢ false positive behavior is the

average number of false positives per experiment in situation S,

vhich we refer t0 as the error rate per experiment (ERPE), asing the - -

L e e ——

terminology of Hartley (1955). It is identical to :dller's {1966)

expected error rate, if the 15 statements being made about the

significance or insignificance of -ché 15 contrasts in one 2!'

Testorial experiment ace viewed as a family, in 'iller's terminology.

- -We use the statistic £2(S) to estimate the KPE, vhere

15=-r
r(s) = ] 3 ald).
J=0

For evaluating a version's final estimate of o in a given situation

the criteria are the odbvious ones: Er, the mean of the version's

1000 final estimates of ¢ in this situation, and sa(sf), the variance

of these sstirates. The first critericn enables us to estimate the

tias in the estimates of o and to observe how this bias changes

from situation to situation. The second criterion provides an

estimate of the nracison of the entire variance estination process

and Tacilitates afficiency comparisons.
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b

This report concentrates on the meazures d, {1, and s g+ Results

\
ik}

for the other measures and two additional versions not reported here

are given in Zahn (1969) and aré availadble from the author on request. .

:nEfﬁ»ﬂbwl«’mmmﬁm&mé‘x‘twwolkm'
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. THE EMPIRICAL BEHAVIORS OF VERSIONS X, S, AND R IN
TYPE. I -SITUATIONS

i Al

T T

We discusg the empirical behaviors of versions X, S, and R

in the null situstion and in l~-situations for a = ,05, .20, .40,

Since differences emong the versions and the performance measures are

L 1

much the same in 2- and h-situations as in l-situations, ve consider

only cne version, version S, in these situations and cancentrate

ot e

on the detection rate. In 6-situa’ions we comsider version R, the

snly one of any use in detecting real contrasts vhen so many are

present,

5.1 HNull Situation Reaulis

Takle 5.1 gives 11, Et, and s(st) for each version in the null
situation at each of three critical value levels: a = ,05, .20, and .LO.
Since the values of fl are estimates of binomial proportions, the

stand=rd deviations of f1 using .05, .20, and .%0 level critical

values are approximately /.05 x .95/1000 = ,007, .013, and .015,
respectively. The standard dsviation of s ¢ for a marticular version
and critical value level is easily calceulated by dividing the
approvriate s(s,) vy /1000 . Though the differences between several

values of f1 and their corresvonding a are too large to attribute to

chance alone, thev are not alarming vhen we recall that there is also
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TABLE 5.1

Empinical Rehavion of Yersions X, S, and R
in the Null Situation Using o = .05, .20, and LD

’ e

¢ . . Criticel Value Level
- Version : Zriterion
.05 .20 .40

= i fl oan' 0102 . 379
X 3 .981 o3 .883
=2 s(s ) .193 .218 .238

1 051 .18 .363
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sampling error in the estimated percentiles being used as critical

values., As we expect, o is underestimated more, on the averagé, for

AR P o, A T R

larger a as more nf the larger null ccntrasts are declared significant

and removed from the finsl estimate of o, #ildly surprising, however,

L

is the small nepative bias (-11.3% to -1L,57) in s, for all versiouns

b g
using L0 level critical values.

A comparison of s(sf) to the standard deviaticn, 1//2n, of s,
the sample standard devistion, based on 1 demrees of freedom indicatesi
that the estimate of o given by the half-norml plet using ¢« = .05 is

as efficient as an s based on 13.4 ™horest" degreés of freedom. By

honest, we mean that the variables includad in the construction of

s are all i.i.4. }‘I(O,oe'). A simulation study nct reported here in-

oD Aty

dicated that if in {D) the half-normal plot alvays uses all 15 con- .

e

trasts to estimate o, i.e,, if it uses 0.0 level critical values,

! its final estimate of ¢ is 997 as efficient as s. Thus, the lower
: . efficiency of the half-normal plot g estimates using a = .05 is not
due to the fact that ¢ is estimated by the slope of the line fitted

to the error contrasts, rather than s. Instead, the source of the

g A WA Wb

inefficiency is that each half-normai plot is allowed to declare
contrasts sifnificant and remove them from the estimate of o, Hence,
occasionally the half-normsl plot's final estimete of o in (0) will
be dased on 1k or fewer null contrasts. This is the price we pay
for having the nover to detect real contrasts and remove them from
the final estimate of ¢. Using a = .20 and a = .40 we are obviously

more likely to detect real contrasts.‘but the price we pay in the

null situation is that s, is nov only as efficient as an s based on

10.9 and 9.0 degrees of freedom, respectively. -
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S¢2 1-Situation Results

~Table 5.2 describes the empirical behavior of the versions
using a = .05, .20, and k0 in lositﬂatious. We can examine the pre-
cigzion of the results given in Table 5.2 by noting that 4 and f1 are
norely estimates of bdinomial proportions and their variunces can be
estimate? by tle unua) formi.ae. The estimeted standard error ot
;’3 s(if), is obviously s(sf)/ i100G. Specific values of s(sf) are
preunfed in Zahn (1969). For the versions, critical value iévels,
and situstions in Tahle 5.2 the values of s(3.) range from a mizimm
of .006 for all versions using .05 level critical values in situation
(1,10) to a maximum of .01 for version R using .G5 level crivical values
in situation (1,50}, with 90% of the values being in the renge .007
to .010. ‘

The differences smong the values of d, the detection rate, in
situations (1,10) and (1,20) for the three vervions are small. Versions
X and 8 have considerably larger detection rates than R vhen the size
of the real contrast prevent is between 3¢ and To. Figure 5.1
summarises the differences in 4 among the versions for ¢ = .05 and .20.
It furtk:r emphasizes the shmriti between versions X and S and the
Gissinilarity between them and version R.

Through detection rate varies considerably from version to
wersion, all f1 values are close to their respective a's. The
largest differences between f1 and @ cccur vhen the real contrast
is t-J.l. Even in (1,20) the probability of the real contrast being
% is only 0.45. Thus, .ae low detection rate in t;:is situaticn results

-~ in few oppcrtunities 1o declare even one false pesitive,
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TABLE 5.2

Empinical Sehavion of Versions X, S, and R

23k 2 B S g iy
N L e el
i ARV L AN

ig in i-Situations lsing a = .33, .20, and L0 -
£ % Z
Version SOriterion « Situations HE

e o, T TSSO (0 BRIy S AR T
ki A > il ) .

(1,10) (1,2¢) (1,30) (L4¢) (1,5) (1,600 (1,70) {1580}

T Y
IabpS I e

05 L0199 .15 .33k 615  .862  .059 .99k 1,000
a .20 .060 .266 .56 ,820 066 .97 1.000 1.000
A0 120,393 (730,023,001  ,000  1.000 1,000

vk Ll g

s
)

.05  .OMT  .ohy  .ok0 .ok .oh3  L051  .OWT  .oh2
. X ¢ «20.  .153 .165 .153 192 L17h 176 A7 191
L0 340 340 36 L350 37T 346 .30 36k

N . o AN b (A

et St

05  1.02h 1,059 1.008 1,08k 1,031 999 985 .993
f 020 0085 c99° 100% 0078 insl‘ .0!‘9 .Q’la oqsl
ko .923 .01% .929 R L) § 818 890 .85
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L ¢ 40 11T L399 LB 811,089,099 1.000 1,000 3
e >
3 } .05 .06 .ol .0h3 05T .0L0 .09 OU7- 050 i
= ] 7 .20 .56 .66  .ask 207 182 .98 161 196 |3
B Lo (317 0358 .35 3% 0,383 .367 .35W (384 iE
e . 2
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d .20 .06k .230 (M3 .78 89T .91  .993 1,000 |
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All versions have a tendency to overestimste o, particularly

et N s e st

when small rea) contrasts are present. The bias is worst in (1,4 ) and,
for the better versions, is negligible in-(1,60) and (1,8s) for
a = ,05. A striking aspect of 51,'3 behavior for all versions is

that s ¢ is not a monotone function of the size of the resl contrast.

Rather, §f increases as the size of the real contrast increases

to 3 of lo, depending on the version, ani then decresses as the

sy A T A

size increases to 80. To explain this, we note that vhile there are
fewer undetected contrasts in (1,40) than in (1,20), the bias caused
E & by an undetected contrast is greater if its size is 4o than if its

size is 20. The additionsl bias offsets the fact that the detection

rate is greater in (1,46) than in {1,20).

i i bt

Version R's infer - r detection rate affects its final estimate

Wk e et

of o in two rather obviocus ways: {1) Any undetected real contrast
will be included in construction of s e Since R detected the fewest
real contrasts, the bias caused by undetected real contrasts will

be more severe for R than for the other versions. (2) The estimates

of o vary more for version R than they do for the other versinns;

S o S A O by

thus, s(st) is larger for R than for the other versions. 3
S.3 2- and L-Situation Results 3
- i-:ﬁ

Since the differerces among the versions and criteria are much é

3

the same in 2~ and L-situations as in l-situations, we concentrate k.
E]

here on the detection rate, perhaps the criterion of most interest #
- 2

to the axperimenter, and version S. We concentrate oh S since it is E

generally superior to the other versions, c.pecially in l-situations 3

vhere its detection rate always exceeded the detection rates of

DA Qe e

T S SRR T T L, o
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the other versions, often by as much as .07 to .15. Bmpirical results

for other versions and cther criteria in these and other situations
appear in Zahn {1969} and are available from the author on request.
Table 5.3 pives empirical estimates of the detection rate, FER,

TR

and average final estimate of ¢ for version 3 in l-, 2-, end k-

situations using a = .05, .20, and .40. Tsble 5.3 also gives the

SR A

v
A

estimated standard errors of dend & e To compute the standard error

o

o

of 4 in 2-, h-, and 6-situations, we first note that results for

individual real contrasts are not independent within trials. Thus,

e A
e

oY
—

d behaves as a proportion estimated by cluster sampling and its

e 3"!_&3

1

P T

standard error can be estimated using the anpropriate formulae in
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Cochran (1963, p. 64).

A
ke

o As we expect, for a fixed numbar of real contrasts present,

the detection rate increases is the size of the real contrasts in-

R e L N 7]

5 fat h 5

E creases. However, the detection rate decreases as the number of reul

PR

contrasts present increases. Version 5 has a moderately smaller

A

detection rate in 2~-situations than in l-situations. It has a much

smaller detection rate in L.situationz than in l-situations.
Exanining Table 5.3 we see that increasing & from .05 to .20 @

yields a sizable increase in the detection rate of version S.

Increasinzg o to .LO yields even larger detection rates, The price

ML P A WS

we pay for the larger detection r.tes is, of course, that the prob-

ability of at least one false positive is much larger. However,

A S AT LK bt

snother benefit helping to offset this crst is that the bias in 5

i'f decreese sharply as a increases.
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TABLE 5.3

Empirical Beravion.of Vension § in 1-, 2-, am! W-Situations with Real Contrasts of
cizes 20, 43, 6o, and 80 Present, Using a = .05, .20, and .LO.

Fusber of Pr . '

Real Con- Size of the Real Contrasts Presen

trasts Criterion a 20 ko i [ 8o i

M - ’%

: .05 .105, .000} .605, .015 | .957, .006 {1.000, .000 E
€ d,5.e.(d) .20 .264, .OLL| .826, .012{ .998, .001 |1.000, .000 3
o" 0399’ 0015; '911’ 0009 0999’ ow}.' 1.000, .000 '§§
.05 .ouc i .057 i .0Ug .050 3
1 £1 .20 .166 i .207 1 .198 .196 :
; n!‘ 0358 i 0386 2 .%7 la& ::’:_E
3 1 3
= _ .0511.062, .007 1,086, .010 {1,001, .008 : .990, .007
- Sf,ﬂ.e.(gf) * .990, 0008 .972' 0009 .9"2, .007 09“6’ Om‘l f:
Jo| .015, .008; .88, .c08 .891, .008 ; .889, .008 i
e 05| .080, .00T| .535, .01k | .95%, .006 {1.000, .000
L E d,3.2.(a) .20 .220, om0} .822, .m0} .097, .001 |1.000, .000 3
» " th .365’ .012 092_0’ .007 1..000, .001 1.000, .000 —é
3 .05| .023 .oll .06 D058
E. - 2 7 .20 .12 .166 a81 .188
3 L, .283 .3k1 .335 .358 7
‘ - .05{2.171, .008 |1.233, .013{1.019, .00 | .976, .007 fz
- sas.e.(s.)  .20{1.078, .009 | 1,006, .020 | .9k2, .00 | .933, .007
::‘_ .uo ‘98“, cm 0921’ .008 . .901, 0001 0893’ 0007 :t
?:‘ .05 .037, .GOL | .270, .01=§ .86h, ,010 <997, .0G2
9 d,s.e.(d) .20 .134, 007} .65k, .03 .088, .003 [1.000, ,005
A Jiof .2W7, L0009 .835, 009 .999, .001 !1.000, .000 }
3 .05{ .008 .002 000 000
3 & 1 .20} .050 .010 | -coo .000
D Jbof 143 | .028 | +000 000 :
2 _ - .05[1.380, .008 | 1.86, .020 | 1.242, 024 [1.001, .008
L Spes.e.(8;)  .20{1.262, .010 |1.326, .016 {1,011, .00 | .994, .007
‘ .boj2.169, (001 {1.121, .023 | 0995, .007 | .994, .007
R H 1 *
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S.4  6-Situation Tesults

Table S.4 susmarizes the performance of version R using o = .05,
«20, and .40 in 6-situations. Only version R does not break down
in 6-situations. When six real contrasts are present, the test
statistic d.euoninctors of versions X and S will either squal or include
the smailer real contrasts. This contamination aivays occurs and is
severe enough 30 that neithier version detects even 2% of the real
contrasts present. Since the test stetistic denominators of version
R are based on at most the seven smallest order statistics, R still
detects some real contrasts in G-situations. Of course, its de-
tection rate is smaller in S-situations than in l-situations.

The gap between a and f1 is wider in 6-situations than in
1-, 2=, or h-situations. 1n addition, this gap narrows as the size
of the real contrasts present increases,

The bias in Ef vhich is severe in G-situations is smallest for
version R since it has the largest detection rate in these situations.
However, even for version R the bias is iarge. Furthermore, 8, for R
in 6-situations is exceedingly varisble, which is not surprising
since s ¢ vill equal approximately S.0 if none of the real contrasts
in (6,8¢) are detected and approximately 1.0 if all the real contrasts
in this situation are detectsd.

In these situations the bias in Ef can be greatly reduced and
the detection rate dramatically increased by using larger a. Hence,
wve highly recommend the half-normal plot with a = .20 or kO level
critical values to the experimenter vho is doing exploratory re-

search and might encounter a U- or a G-situation.
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TABLE 5.k *L

Empinical Nehavion o4 Version R in G-'ituations

sing a« = .05, .20, and b0 h

. Situations
Version Criterlon x (6’20) (6,“0)7 -(%) T (6,&) §

761, .03
-983, .00%
1,000, ,0CO

.05{ .015, ..003 ! .132, .010 | .k30, .015
d,B.eo(d) 020 007"' .006 ohla’ .0118 .837’ .001
oho 0189, cmg - 697, 0013 0976’ omh

——rmsme

it e e d 13
e

05| .005 .020 .025 +Oh7
R n .20| .okl .129 .190 ATT
Lol .135 .306 378 | «385
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X .0511.603, .009 {2,454, .021 |2.602, .C4T |1.038, <055
s'f,s.e.(if) .20§1.526, .012 |1.889, .029 |1.3%0, .035 |1.024, .018

.boj1.360, .01k {1.355, .026 | .979, .016 .L.913, .008
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5.5. On Daniel's Questions about Plot Modifications

The results ol our research suggest answers to some questions
raised dy Daniel (1959) on possible variants of the haif-normal plot.
.He wonders if "an invariable rule should be set up, using oniy some
tixed proportion of the smaller contrasts to estimate Aerror". Ve
oppose the idea of using a fixed number of contrasts in a single
replicate 2" factorial experiment to estimate error because of its
i_.;aei’ﬁciencg vhen. ther: are only one or tvo real contrasts.

Another query is whether one should use the arror contrasts to
fora-a mean square error term, Since fitting a line to the error
contrasts yields a highly efficient, quick-andw-easy estimate of o,
ve do not feel that it is necessary tc form the mean square error
tera,

Daniel also questions if one should "decline to use only higher=-

order interactions for error since some plot-splitting is almost

inevitable in multi-stage processes”. This seems wisz if the danger

of hidden plot-splitting is sizable, though this analysis would pressat

nany other complications as well.

Ve feel that one should Minsist on at least partial duplication
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of 2p-q experiments vhen no good previous estimate of error is available"
(Daniel, 1959), especially when the experimenter thinks that as many ss
four real contrests may be present when p-q = 4, Without the partial

duplication in these difficult situations, the error variation estimate

is badly biased when several real contrasts of any size, or a few small-

to-sedium-sized real éontrasts, are present.
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.- An alternative procedure which has been suggested for use vwhen

a8 many as many as six or nine reel contrasts are pxjeSent in a non~

replicated 21‘ factorial experiment is the chain-pooling AROVA (Holns

O i A TR S s

and Berrettoni, 1969). In these situstions the chain pooling pro-
cedure might be superior to the half-normal plot versions discussed

I T AR TERRPR T TR AR

in this paper,

5.6 The Half-Noxmal Plot as an Outlier Rejection Procedure

Suppose ve obwerve 15 random varisbles which are thought to be i.i.d.

bt ko s e itiny
N

n(o,az) an order to estimate oz. However, if some of the observations

A b,
——

sre outliers wvith means u # O ve will went to exclude these observi-

wixrg g sty s - ot bR b

—

tions from the estimation of 02. ¥ow, the location of outliers under

wnese circumstances pqses: the same problem as does the detection of

L T

e
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real contrasts in a single replicate 2" factorial exgeriment. Thus,
the helf-nor_ai plot can also be used as an outlier rejection procedure.

While doing pilot studies for the Main Study, ve examined the power

P TR Lt

of the outlier rejection procedure (BCT) proposed by Bliss, Cochran,
“snd Tukey (1956). The pilot study results demonstrated a serious defect
in this procedure. Although the BCT procedure is reasonably sensitive

to outliers when only two outliers are present, it is almost useless as

1
THY

an outlier rejectién proceure vhen three or four are present. For

example, when four outliers, each distributed !!(60,32). are presext in

the situation descrived in the previous paragraph, BCT detects approx-

imately 12% of them. Since all fifteen observations are used in the

denominator of dCT's rejéction criteria, outliers will alwvays contam-
inate the denominstor. The consequeaces of this contamiration are moxst

seriocus,
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Obviously, BCT is more advemely affected by an increesse in the
nmber of outliers than is the half-normal plot. A suggestion based
on the half-normal plot results is tc modify the BCT denominator so
that it does not include the larger observations. For instance, in
the situation described at the beginning of this section, a modified
denominator which might be of interest is the sum of the eleven observa-
tions closest to 0.0. This modification should make the procedure more
robust, though it will sacrifice some efficiency when only one outlier

is present.

We feel that thei'e ace inadequate warnings in the statistical
literature as to the dire consequences such as the above which may
result from including outliers in the denominators of the test
statistic. Several of the conventional outlier rejection procedures
include al)l observations in the test statistic denominators. For

instance, vhen searching for ome outlier, Grubbs (1969) recommends
x =X

Tn = s Vhere x = the largest observation in the sample,

_ n
x=]x /n,
1

We question whether manr experimenters appreciate hsw drastically the
sensitivity of procedures such as Tn may be zffected by the inflation
of the test statistic denominator which occurs when two or three out-
liers are included in it. In geperal, our suggestion is to base the

test statistic dznonminator on cnly the smaller observations in order

to nminimize the probability of contaminating the denominator.
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6. THE ENPIRICAL BEHAVIORS OF VERSIONS
X, S, AND R IN TYPE II SITUATIONS

This section discusses the results. of using the half-normal plot

il EPRI HESKCCR S L Lt B gl Uiy
L L s R A o MO 1
o
i

- - .

to analyze experiments in Type II aituations, i.e., situations in

vhich there are real contrasts of two different sizes. The main ;

results for Type II situations are summarized in Tables 6.1 and 6.2.

6.1 1-1-S{tuation Results

In order to isolate the effect of the presence of one size B,
contrast on the detection rate for one size m, contrast in situstion . z
(l,nl;l;na), we have :onstructcd Table 6.1. Consider the section of
this table devoted to version X. The fivc rows of this section re-
present detection rate curves for version X under five different

sets of conditions. The first row gives d(1,m), for m = 2, bg, 6o,

and 8¢ in l-situations; the second row gives dl(l,ml;l 320) for ‘

PSR L T I

m = 2, lo, 6, Bo3 ete.

To understand how the detection rate behaves in l-l-situations,

L P o e i

we exemine how dl(J.,lm ;l,ma) vories as m, varies from 0o to 80 vy
considering the second column of Table 6.1. This shows that a size
o contrast is more likely to be detected if it is the only real
contrast present than if another real contrast is present., This is
reasonable since the detection rate of all versions has been observed
to decline as the numher of real contrasts present increases. As a
second real contrast of increasing size is introduced, we note that

the detection rate for a size Uo contrast drops at first from 0.4b to

b e e
PN

0.35 for R and then rises to O.4) as the size of the second contrast
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TABLTE. 6.1 -

L : Detection Rate for Ore Size m, Contrast tthes Nne. Size m,
- F : ~ Contrast is Also Preseat in the Exporiment

i

E-§ These recults are all for versions using 0.0% level critical
3 values,

e ailinds swaad s bk A Jwir

= . m,= 20 ] e 8c
i' Vbrsionl r, é
- O 0,008 ol oml  o.97? ;
§;] 20 0.0'62 0.35 0.75 0.95 ’é
9 R ko 0.07 0.382  0.76 0.96 H
3 %s 0.06 0.k a.R2 0.96 i
85 0.07 0.41 n.81 0,062 3
1 1 1 1 :
0.12 0.62 0.9¢ 1.00 %

0.00° 0.51 0.93 1.00
G.10 0.53° n.03 0,90
0.09 0.57 0.95°  1.00
0.10 0.6 0.96 1,007

=
FERT

WU by de i et Rl sty ) # S

0c o.nt  o0.62 0,06t 1.00t
Za 0.08° 0.5 0,02 1.00
bo 0.10 1.58% 0.0 1.00
6o 0.10 6.58 6.95°  1.00
80 0.10 0.62 0.96 1.00°

m

1These detection rates are the detection rates in the resmective
l-gituations.

afhese detection rates are the detection rates in respective

2-gituations.
»

0.10'd1(1,20;1,&u) = Detection rate for the size 20 contrast in
situation (1.2031,4%), i.e., 10% of the size 20 contrasss present
in the 1000 simuletions of situation (1,20;1,40) were detc:ted.
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increases to & . The explanation of .ne rise is that as m, increases
in size, the second real contrast is more likely to be detected.
Consequently, the size lg contrast is examined for significance more
often and is rore likely to be detected.- The detection rate for the
size Lo contrast in the vreseace of an additional, large real con-
t-ast is, hovever, less than the detection rate in (1,% ). The
reason is as follows. In (1,lc) the real contrast is ;;resent with
1k null contrasts, whereas here the size 4o contrast is present
with one large real contrast, i.e., the second real contrast, and
only 13 null contrasts, Thus, less information to estimate ¢ is
available than in (1,lc) and we expect to see a slightly smaller de-
tection rate for the size lgo conirast than ir (1,kc), even vhen the
second real contrast is large. The dips and subseauent rises in
detection rate occur, to within sampling errors, for every version
ond every size contrast. Though consistent, these dips and rises are
not large.

Similar comments hold for the 2-2-sgituation results thich are

given in Table 6.2. Hovever, in these situations the dips and rises

previouslv noted are large.

T. NOMINATION A:ID THE HALF-NORYAL PLOT: SO!E CO!PARIGONS

In analyzing experiments lacking a classical, internal estimate
of error variance, snother spproach is to decide a priori to combine
the higher order interactions to form an estimate 3f error veriance.
This appronch, vhich ve refer to as "nomination™, has been widely

used by experimenters doing single replicate factorial experiments or
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TABLE 6.2

Detection Rate for the Two Séze m, Contrasts When Two Size m,
Contrasts ane Also Present in the Experinent

These results are ull for versions using 0.05 level critical
values,

l \nla 20 Yo 6o ;o

—— s

Version Imé
Og 0.062 0.38° 0.81° 0.96°
20 o.08 o2k 0.63 0.9
R ko 0.0k 0.25" 0.60 . 0.88
6a 0.06 0.31 0.67“ 0.9 -
8¢ 0.05 0.32 0.72 o.91h
0o 0.09° 0.5¥%  0.95°  1.00°
20 0.o6" 0.29 0.82 0.99
X ko 0.05 0.2  o0.61 o001
€3 0.08 0.%0 0.72h 0.91
30 0.07 0.45 0.86 0.95“
Qg 0.08% 0.54%  0.95°  1.00°
za 0.oL" 0.33 0.85 1.00
S Lo 0.06 0.27h 0.77 0.98
6a 0.08 . 0.49 o.ssh 0.99
8o 0.07 G.Sk 0.95 1.00"
2

These detection rates are the detection rates in the respective
2-situations. .

l'Tluese'(’xeteeti.c:n'z rates are the detection rates in the respective
L-sityations.

» )
0.638&2(?,2032,60) = Detection rate for the size 60 contrasts in

situation (2,20;2,60), i.e., 815 of the size 60 real contrasts
present in the 1000 simulations of situation (2,20;2,60) were
detected.
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their fractions in wellwresearched areas, such as agriculture,

vhere there is ample evidence from earlier experiments that the real

effects of such high order interactions are usuaily ncgligible.
A nomination procedure which i3 illustrated by an example in
Davies (195h, p. 27L) consists of the followvaing steps:
(1) The experimenter assumes that certain contrasts, the
“nominated" contrasts, are null and constructs s§ R
an estimate of J2, from them.
(2) Each of the remaining contrasts is tested for significance
by dividing its square by sg and comparing the result %o
a rercentage point of the F-distribution.
Since the results of the fain Study indicate that, barring

the breakdovn of a procedure, increasing the EER and ERPE results in

an increase in detection rate, ve shall compare in this section the i3
half-normal plot and a nomination procedure with s;i:;ilar EER and ERPE. 3
For the EER cf the nomination procedure to be comparable to the EER
of the half-nornal plot using .05 level critical values, the 0.5% ] :

percentage point of the appropriate F should be used, while the 1.0%

point should be used if we desire the ERPE's of the two procedures ‘g
to be comparable, ! %

Another difficulty arises while attemptine to compare nomination i%g
to the nalf-normal plot: In order to calculate the detection ra.t? of é
the nomination procedure from taoles of the noncentrel F- or t- %

distribution, ve must make the basic assumptiou that the experimenter

nominated only rull contrasts. This assumption tiases the results 'n

a2
:
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favor of nomination, If it is true, ali the reel contrasts will be

tested for significance. This assumption precludes any contamination
by real contrasts of either the test statistic denominstor used by
nomination or the fina} estimate of error variance given by nomination.
Al’nrtherlbre, s§ will not become increasingly inflated as the number

of real contrests increases.

e let H(e,F(1,e,p)) dencte the variant of nomination in vhich

e contrasts are nominated and F(1l,e,p) is used as the critical value.
In this section ve restrict our attention to 2“ factorial experineni’;s
and two qominntion procedures: one nominating five error contrasts,
¥(5,F), and the other nominating ten, N{10,F). By interpolation in
Tang's tables (1938) and in the non-central t-taﬁ.ies of Resnikoff and
Lieberman {1957), ve can calculate the pover of ¥(5,F) and N(10,F)
in (1,2), (1,40), (1,60) using various F-percentage points as
eritical values. These results are given in Table T.1.
Although :the half-normal plot has been unfavorably ccrpared
to -nomination procedures in this section, it gives a very good
account of itself with respect to detection rate vhen compared to
nomination procedures with similar EER and ERPE, The results of
this section indicate that the half-normsl plot has a distinctly
larger detection rate than a nomination procedur:e using the same
ECP i€ the exrerimenter's prior information 1:;11 only allow him to

nominate 3- and L-factor interactions. Hovever, if he can sccurately

‘nominate ten error contrasts, nomination will have a larger detection

rate than the half-nocrmal blot if four real contrasts are present,
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TABLE T.1

Detection Rate o4 N(5,7) and N(10,F)
Using Three Critical Values

n(5,rF(1,5,-))

(Hominating all 3-

Critical
Value (1,20)

F(IQS’QOS) ‘3!‘

F(1,5,.01) .13 A

F(1,5,.005) .08

and L-factor interections)

Situation
(1,%0)

.86

(1,60)
.99

«55

.30

n(10,F(1,10,.))

‘Nominating all 3- and b-factor interactions and 5 of the 6

2-factor interactions)

Critical

Value (1,20)

b

.19

F{1,10,.05)
F(1,10,.01)

F(1,10,.005)

not
tabled

Situation

(1,4%0) (1,60)

.93 1,00
L7

.65

.99
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8., CONCLUSIONS AND RECOMMENDATIONS

8.1 The Hal-Nowmal Plot and 2" Factonial Experiments

Since the half-normal plot is intended to indicate which con-
trasts are real and to estimate o, we will judge it by these standards.
As regerds detection rate, we observe in Section 5 that the halt-
normal plot using .05 level critical values has s detection rate
as large as 0.12, 0.62, 0.96, and 1.00 in 1-situations for contrasts
of size 20, Uo, 60, and 80, respectively; 0.09, 0.54, 0.95, anx 1.00
in 2-situations; 0.04, 0.30, 0.86, and 1.00 k-gituations; and
0.01, 0.13, 0.43, and 0.76 in 6-situations. Here, we are reporting
only the results for the version having the highest detection rate
in each situation. These results lead to our conclusion that the
half-normal vlot is a suitable procedure for analyzing 2h factorial
experiments, provided that four or fewer real contrasts are present.

The decline in detection rate as the nunber of real, contrasts
increases shouid be noted. The moat drastic decrease in detection
rate occurs as the number of real contrasts increases to six. 1In
G-Situéfions the only version with any detection rate at all is R;
ite detection rate is reported in the previous paragraph. The

other versions have a detection rate of at most .03 in 6-situations.

8.2 A companison of the lakf-Neamakl PLot Vernsions 4n Varnious Situations
In situation (0) all versions are quite similar.
In l-situations versions X and S are similar to each other and
superior to versicn R in every way: they have larger detection ratenr

and yield less biased, less veriable, final estimates of a.
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In 2-situations version R again has little to reccimmend it,
However, it does compare to the other versions slight.y better in 2-
situations than in l-situations. The performances ol versjons X
and § are similar,

In b-situations version S is the best version in terms of
detection rate and estimation of o.

In 6~situations there is little to recommend any version.

Version R is the only _a2 vhich does not collapse, Hovever, its
detection rate is much smaller than it vas in L-situations and its
final estimate of g is badly biased.

Of the three half-normal plot verslons considered we recommend
version S on the basis of its steady performance in l-, 2-, and k-
situations, If the experimenter expecis more than four real contrasts,
ve advise him tc consider whether he can afford an EER of .20 or .LO.

If he can, ve recommend version R with .20 or .40 level criticai values.
Before acting on this recommendation, the experimenter would be well
advised to consider vhether a second replicate or a larger fractional

replicate might pay for itself by dramatically increasing the detection

rate,

8.3 lomination vernsuws the Half~iloxmal PLoi

- As described in Secticen 7,;mnination has & smaller detection
rate than versions of the half-normal p16t writh equivalent EER's, un~
less the experimenter can accurately nominatc ten*eﬁov contrasts,
The half-normal plot estimates o morz efficiently than H(S,F} vhen

the real contrasts are large (80). lovever, if the contrasts are
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only medium-sized and if the nomination is accurate, N(5,F) is more
afficient than the half-normel plot versions examined in the Main
Study. The procedure N(19,F) is as efficient as the half-normal
plot evan vhen the real contrasts are large.

If equivalent EER's are desired, our recommendation is to use
the half-normal plot unless almcst all rull contrasts can be

accurately nominated.
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